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Abstract
The electronic and optical properties of the metallic bcc and β-Sn phases of tin are studied
using density functional theory. The effects of spin–orbit coupling are examined and significant
splittings are found in the band structures for both phases. Based on ab initio band structures we
calculate the anisotropic optical response of β-Sn. Both intra- and interband contributions are
included and the plasma frequencies for both the ordinary and extraordinary optical axis are
calculated. The theoretical results are found to be in excellent agreement with experimental
spectra for the anisotropic optical response. We identify the electronic transitions responsible
for the dominant interband resonances in the near-infrared response.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Elementary Sn assumes several different crystal structures
depending on pressure and temperature. At atmospheric
pressure and temperatures below 286 K, the diamond structure
(α-Sn or grey tin) is preferred. Upon raising temperature
or pressure, a transition to the β-Sn or white tin structure
is observed. The crystal structure of this phase is body
centred tetragonal with a two-atom basis. At a pressure of
approximately 95 kbar [1], a body centred tetragonal phase
appears and eventually (above approximately 400 kbar) Sn
assumes a body centred cubic (bcc) structure [2]. Among these
structures, α-Sn is a zero band gap semiconductor whereas the
remaining phases are metallic.

The structural properties of Sn have been studied
theoretically using density functional theory (DFT) and muffin-
tin methods in several publications [3–8]. Information on the
band structure of the metallic phases is limited, however. The
only available ab initio energy band structures of the β-Sn [3]
and bcc Sn [6] do not include spin–orbit interaction (SOI),
which is expected to be important. In addition, empirical
pseudopotential band structures for β-Sn exist [9, 10]. In
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the present work, the electronic structure of the metallic β-
Sn and bcc Sn phases is investigated using DFT. The effect
of SOI is studied for both phases. Based on the ab initio
band structures, the plasma frequency and interband dielectric
constant are computed. As the β-Sn structure is uniaxially
anisotropic, optical constants for polarization parallel and
perpendicular to the crystal c-axis are calculated. The
theoretical spectra are compared to experimental values [11]
of the imaginary part of the dielectric constant for β-Sn for
both polarizations. The influence of SOI on the intraband
response is found to be noticeable with changes of the plasma
frequency around 0.2 eV. Our theoretical interband response is
in excellent agreement with experiments. The determination of
the anisotropic dielectric constant allows us to predict plasmon
resonances in various geometries. As an example, the present
results are applied to nanoparticles in water and again excellent
agreement with experiments is demonstrated.

2. Electronic structure

Our electronic structure calculations were done using the
Abinit plane wave [12] and WIEN2k [13] DFT codes. All
Abinit results were obtained using 12 × 12 × 12 Monkhorst–
Pack grids and 25 hartree plane wave cut-off energy. We
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Figure 1. Energy band structure of bcc Sn in the equilibrium
geometry with (lower panel) and without (upper panel) spin–orbit
interaction. Fermi level at 0 eV.

used the Teter–Pade parametrization [14] and Hartwigsen–
Goedecker–Hutter (HGH) pseudopotentials [15] treating the
4d states as core states. Plasma frequencies were computed
using tetrahedron integration with 2601 k-points in the
irreducible wedge of the Brillouin zone (BZ) based on the
Abinit DFT band structure. Calculations were performed
with and without including SOI in order to quantify its
importance. The Abinit code does not allow for computation
of interband optical response of metals, however. Hence, for
the calculation of the interband response the WIEN2k code
was applied instead. For self-consistent electronic structure
calculations using the WIEN2k code we have used RmtKmax =
9 and a total of 5000 k-points for the BZ integration.
For exchange–correlation terms the Perdew–Burke–Ernzerhof
(PBE) generalized gradient approximation [16] was applied
and the 4d states were treated as valence states. To calculate
the optical response an even denser k-mesh consisting of
20 000 k-points for the whole BZ was used. We have checked
that all applied k-meshes are sufficient for convergence. All
calculations were done using the experimental lattice constants
for β-Sn (a = 10.98 Bohr and c = 5.97 Bohr [17]) and the
equilibrium value (a = 7.09 Bohr [5]) for bcc Sn at zero
pressure. While β-Sn is the stable phase at zero pressure, the
bcc results are included in order to estimate the sensitivity of
SOI splitting and plasma frequency to crystal structure.

The HGH electronic band structure is shown in figure 1
for bcc Sn and figure 2 for β-Sn. In both cases, the effect of
SOI is significant, as expected for a relatively heavy element.
In the bcc structure, the H15 level is split by 0.63 eV. In
the β-Sn structure, the most pronounced effect of SOI is the
�+

6 –�+
7 splitting of 0.41 eV, roughly two-thirds the splitting

in the bcc case. Our results are in qualitative agreement with
earlier semi-empirical calculations [9, 10]. The SOI has only

Figure 2. Energy band structure of β-Sn in the experimental
geometry with (lower panel) and without (upper panel) spin–orbit
interaction. Fermi level at 0 eV.

Figure 3. Density of states for β-Sn with and without SOI. The
vertical dashed line indicates the Fermi level.

a minor influence on the density of states (DOS), especially
for the occupied states, as illustrated in figure 3. Also, band
structures obtained using different exchange–correlation forms
were found to be practically identical.

3. Optical properties

In general, the optical response of a metal can be decomposed
into intraband and interband contributions. In addition, for an
anisotropic material such as β-Sn both contributions depend
on the direction of the optical polarization vector. The β-
Sn structure is uniaxially anisotropic with the c-axis defining
the extraordinary optical axis. Thus, all optical constants are
labelled ‖ or ⊥ corresponding to the directions parallel and
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Table 1. Calculated plasma frequencies for different crystal
structures.

Material SOI Plasma frequency (eV)

bcc Sn No 11.44
bcc Sn Yes 11.28
β-Sn No 9.39 (⊥ c-axis)
β-Sn Yes 9.20 (⊥ c-axis)
β-Sn No 8.42 (‖ c-axis)
β-Sn Yes 8.25 (‖ c-axis)

perpendicular to the c-axis, respectively. The total dielectric
constant is then εσ (ω) = εσ

intra(ω) + εσ
inter(ω) with σ =‖ or ⊥.

A general expression for the dielectric constant valid beyond
the parabolic approximation for the energy dispersion is [18]

εσ (ω) = 1 + e2h̄2

ε0m2
0�

∑

i, f

[ f (Ei) − f (E f )]|〈 f | p̂σ |i〉|2
E f i [E2

f i − h̄2ω2] , (1)

where � is the crystal volume, m0 is the free-electron mass,
f is the Fermi function, and p̂σ is the momentum operator.
Moreover, |i〉 and | f 〉 are initial and final electron states,
respectively, and E f i = E f − Ei is their energy separation.
The energy of the initial state is En�k , where n is the band
index and �k is the electron wavevector. If the wavevector
of the perturbing electric field is �q, the final state will have
an energy Em,�k+�q . In the long wavelength approximation,
Em,�k+�q ≈ Em�k + ∇Em�k · �q and f (Em,�k+�q) ≈ f (Em�k) +
f ′(Em�k)∇Em�k · �q, with f ′ the energy derivative of f . We can
now convert the summation over k-points into an integral and
separate interband (m 
= n) from intraband (m = n) terms. In
the former, �q can be disregarded and we find

εσ
inter(ω) = e2h̄2

8π3ε0m2
0

×
∑

m>n

∫ [ f (En�k) − f (Em�k)]|〈m�k| p̂σ |n�k〉|2
Em�k,n�k[E2

m�k,n�k − h̄2ω2] d3k. (2)

In the intraband case, we notice that lim�q→0[ f (En�k) −
f (En,�k+�q)]/En,�k+�q,n�k = − f ′(En�k) and utilize the relation

〈n�k| p̂σ |n�k〉 = m0
h̄ ∂ En�k/∂kσ . Also, at low temperature

f ′(En�k) ≈ −δ(En�k−EF), where EF is the Fermi energy. Upon
taking the �q → 0 limit, the intraband contribution then reduces
to the Drude expression [19]

εσ
intra(ω) = 1 − ω2

p,σ

ω(ω + iγ )
, (3)

where we have added a phenomenological broadening γ

assumed independent of direction and the plasma frequency
ωp,σ is given by

ω2
p,σ = e2

8π3h̄2ε0

∑

n

∫ (
∂ En�k
∂kσ

)2

δ(En�k − EF ) d3k. (4)

This expression can readily be evaluated using tetrahedron
integration and the computed band structure. Data exported
from Abinit have been used in a Fortran program constructed

Figure 4. Experimental absorption spectra from [11] (solid curves).
The dotted curves are the interband parts obtained by subtracting
calculated intraband parts.

to this end and the results calculated for bcc and β-Sn are given
in table 1.

It is clear that both anisotropy and, to a lesser degree, SOI
influence the plasma frequency. For free-electron like metals,
the plasma frequency is ωp = (e2n/ε0m)1/2 and therefore
expected to depend mainly on the electron density. Hence,
the difference between bcc and β-Sn results might appear
surprisingly large given the nearly equal atomic volumes of the
two structures. Inspection of the bcc band structure shows that
for this structure the Fermi level is located near the parabolic
portion of the bands. However, in the β-Sn case, the additional
four valence electrons per unit cell raise the Fermi level into
a highly non-parabolic portion of the band structure. This
causes the reduction of the plasma frequency. It is clear that
crystal structure substantially affects plasma frequencies (and
SOI splittings) even though average electron densities of the
two phases are nearly identical.

Knowledge of the plasma frequency makes it possible
to extract an approximate interband dielectric constant from
available experimental data for the total (intra + interband)
response. To this end, we have used experimental data for the
imaginary part of εσ (ω) from Schwarz [11]. Interband spectra
are obtained by subtracting the intraband response equation (1)
using the plasma frequencies of table 1 (including SOI) and
taking h̄γ = 0.08 eV. This value was selected by fitting
the Drude formula equation (3) to the low-frequency tail of
the experimental data, which is dominated by the intraband
response due to the ω−1 behaviour. After subtracting the
Drude term, the interband spectra in figure 4 show pronounced
resonances between 1.0 and 1.4 eV. For the parallel response,
additional resonances are found around 2.0 and 3.4 eV. For
the perpendicular case, only a high energy resonance around
3.6 eV is observed. Finally, shoulders around 0.7 eV are found
for both polarizations.

To complete the analysis of the optical response, the
real part of the interband dielectric constant is needed. We
obtain these spectra in two independent ways: (1) by Kramers–
Kronig transformation of the experimental imaginary part of
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the interband response and (2) by means of full-potential
linear augmented plane wave calculations using the WIEN2k
code [13]. In the latter case, the imaginary part of the
response equation (2) is first computed in the limit of vanishing
broadening (delta-function resonances). Subsequently,
convolution with a Lorentzian line shape function (taking again
h̄γ as the broadening) and the Kramers–Kronig transformation
provides the complex dielectric constant. The first method
is useful because the imaginary part is known over a wide
frequency range. Note that we only transform the interband
contribution in order to avoid the low-frequency singularity
of the spectrum. However, the missing high-frequency part
(h̄ω > 5.37 eV) must be estimated and for this purpose we
fit an ω−3 tail to the experimental spectrum. The missing part
of the spectrum below 0.5 eV is ignored.

In figure 5, we compare experimental (‘semi-experimental’)
spectra with ab initio theoretical results for the interband
response. Overall, a very satisfactory agreement is
observed. In particular, the location of interband resonances
is reproduced by theory with high accuracy. Moreover,
the differences and crossings between spectra for the two
polarization directions are in good agreement. The most
pronounced discrepancy between theory and experimental data
lies in the magnitude of the spectra. Hence, the resonance
at 1.1–1.3 eV is overestimated by about 40% leading to a
peak of ∼70 in contrast to the experimental values ∼50 (‖)
and ∼40 (⊥). This discrepancy is also apparent in the real
parts of the spectra for which the minima around 2 eV
are twice as deep in the calculated curves. It might seem
surprising that simple density functional methods provide such
excellent agreement with experiments. However, the main
effect of correlation corrections is a downward shift of the
4d states, which play a role in cohesive properties [5]. The
visible and near-UV optical response (h̄ω < 5–6 eV) is not
sensitive to these low lying states and, hence, insensitive to
possible correlation effects. The error due to an overestimated
hybridization of 4d states with other valence states is expected
to be small. In general, quasiparticle corrections are expected
to be less important in metals than in semiconductors. The
good agreement with experiments confirms this trend in the
present case, indicating that bare DFT bands are reasonable
approximations to the full quasiparticle band structure in β-Sn.
Moreover, quasiparticle approaches, such as the GW method,
are extremely computationally demanding if dense k-point
grids and SOI are required. We will attempt to address these
issues in future work, however.

The most prominent features of both calculated and
experimental interband spectra are the resonances at 1.1 and
1.3 eV. Our analysis allows us to provide a detailed assignment
of the origin of these peaks. From the band structure shown
in figure 2 it might be expected that the nearly parallel third
and fourth band crossing the Fermi level along the � →
X [(0, 0, 0) → ( 1

2 ,
1
2 , 0)] line of the Brillouin zone are

responsible for these features. In fact, by analysing the k-points
contributing to the response between 1.0 and 1.4 eV we find
that most points are significantly displaced from the kz = 0
plane, as shown in figure 6. In this plot, we have collected
k-points, for which allowed transitions with energies in the

Figure 5. Comparison of semi-experimental and ab initio theoretical
spectra for the interband response. The real parts of the
semi-experimental spectra are Kramers–Kronig transforms of the
imaginary parts.

right range (resonance ±0.1 eV) are found. By considering
separately the parallel and perpendicular response, we identify
the Brillouin zone region responsible for the different interband
resonances. Hence, in the plot, we distinguish between k-
points contributing to the parallel (left panel) or perpendicular
(right panel) response as well as contributions to the 1.1 eV
(black) or 1.3 eV (green) resonance. For the parallel response
the dominant transitions are all between the fourth and fifth
bands. Similarly, for the perpendicular response, transitions
between the fourth and fifth bands dominate the low energy
peak while only the high energy (1.3 eV) resonance is
attributed to transitions between the third and fourth bands.
Moreover, the k-points are distributed over a significant portion
of the Brillouin zone and, hence, cannot be ascribed to
particular high symmetry lines or points. From figure 6 it is
evident, however, that most points lie close to the � → X
line when projected onto the kz = 0 plane. It follows that the
split resonance at 1.1–1.3 eV should not be attributed to the
SOI induced splitting of energy bands near symmetry points
observed in figure 2. In fact, we find that SOI splitting does
not produce any clearly discernable features in the optical
response. This is because the signatures of SOI split symmetry
points is masked by a large ‘uncritical’ background originating
from an extended part of the Brillouin zone. It is conceivable
that modulation spectroscopy could resolve such features,
however [20].

The detailed analysis above provides an important link
between the optical response and the electronic band structure,
taking into account the influence of the uniaxial crystal
structure on both intra- and interband response. However,
the present results are also useful for the prediction of
novel properties such as plasmon resonances in various
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Figure 6. Distribution of k-points contributing to the interband resonances at 1.1 eV (black points) and 1.3 eV (green points) for the response
parallel (left panel) and perpendicular (right panel) to the z-axis. For each point, the projection onto the kz = 0 plane (small balls) is shown to
help visualize the three-dimensional distribution.

geometries. As a simple example, we consider β-Sn
nanospheres embedded in a host material with dielectric
constant εhost. In the Rayleigh limit appropriate for very small
particles, the plasmon resonance is located at the minimum of
the function |εσ (ω) + 2εhost|. Using the ‘semi-experimental’
data above and taking εhost = 1.52 corresponding to a
glass host, we find resonances at 6.0 and 6.25 eV (207
and 198 nm wavelengths) for parallel and perpendicular
polarization, respectively. Similarly, for nanoparticles in water
with εhost = 1.42 we find 6.35 and 6.6 eV for the two
polarizations. Again, this is in good agreement with available
experiments [21].

4. Summary

In summary, ab initio computations have been performed
for the electronic structure of metallic tin in the bcc and
β-Sn phases. The influence of the spin–orbit interaction
on the band structure has been investigated and significant
band splitting along certain high symmetry lines is predicted
for both structures. The electronic structure data are
subsequently applied to study the optical response of the β-
Sn structure for which experimental data are available. Both
intra- and interband dielectric constants are evaluated and
due to the uniaxial crystal structure results are given for
polarization parallel and perpendicular to the c-axis. For the
intraband response we find that the plasma frequencies differ
substantially for the two directions and, in addition, that spin–
orbit interaction leads to a small but noticeable reduction.
The interband response is characterized by several resonances
but dominated by a double peak in the near-infrared 1.0–
1.4 eV region. Again, pronounced differences between the
two polarization directions are observed. Comparison with
experiments shows excellent agreement for position as well as
polarization dependence of the interband resonances. Finally,
plasmon resonances of β-Sn nanoparticles are estimated and
again excellent agreement with measurements is demonstrated.
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